# **DIN EN 20898-**



## Strength values of screws / nuts

The identification of the tensile strength class for standard steel screws consists of two figures separated by a point:

- the first figure, called the strength index, is equal to 1/100 of the tensile strength  $R_m$  in N/mm<sup>2</sup>
- the second figure, known as the yield point ratio, is 10 times the ratio of the yield point Re or the substitute yield point R<sub>p 0.2</sub> to the nominal tensile strength R<sub>m</sub>.

If the tensile strength  $R_{\rm m}$  is multiplied by  $^{1}/_{10}$  of the second figure, the result is the yield point  $R_{\rm e.}$ 

#### Example:

Extract

Screw of the strength class 5.8, strength index = 5, yield point ratio = 8

Tensile strength R<sub>m</sub> = Strength index x 100 = 5 N/mm<sup>2</sup> x 100 = 500 N/mm<sup>2</sup>

Yield point R<sub>e</sub> = Tensile strength R<sub>m</sub> x 0.8 = 500 N/mm<sup>2</sup> x 0.8 = 400 N/mm<sup>2</sup>

| Material characteristics                             | Strength class |     |     |     |     |      |      |  |
|------------------------------------------------------|----------------|-----|-----|-----|-----|------|------|--|
|                                                      | 4.6            | 5.6 | 5.8 | 6.8 | 8.8 | 10.9 | 12.9 |  |
| Tensile strength R <sub>m</sub> in N/mm <sup>2</sup> | 400            | 500 | 500 | 600 | 800 | 1000 | 1200 |  |
| Yield point R <sub>e</sub> in N/mm <sup>2</sup>      | 240            | 300 | 400 | 480 | 640 | 900  | 1080 |  |
| Elongation at break A in %                           | 22             | 20  | 10  | 8   | 12  | 9    | 8    |  |

If, for standard elements, simply one figure is given, e.g. "strength class 5", it is equal to the strength index and must thus be correspondingly handled.

### Strength values of nuts

The identification of the strength class for standard steel nuts consists of only one figure. It gives information about the test stress  $S_0$  on a hardened test mandrel and is expressed as the ratio  $\frac{1}{100}$ . The test stress  $S_0$  is equal in principle to the tensile strength  $R_{\rm m}$ . Example:

Nut of strength class 6

Tensile strength R<sub>m</sub> = Strength index x 100 = 6 N/mm<sup>2</sup> x 100 = 600 N/mm<sup>2</sup>

| Test stress S <sub>p</sub> in N/mm <sup>2</sup> | Strength class |     |     |      |      |  |  |
|-------------------------------------------------|----------------|-----|-----|------|------|--|--|
| for threading                                   | 5              | 6   | 8   | 10   | 12   |  |  |
| M 4                                             | 520            | 600 | 800 | 1040 | 1150 |  |  |
| above M 4 M 7                                   | 580            | 670 | 855 | 1040 | 1150 |  |  |
| above M 7 M 10                                  | 590            | 680 | 870 | 1040 | 1160 |  |  |
| above M 10 M 16                                 | 610            | 700 | 880 | 1050 | 1190 |  |  |
| above M 16 M 39                                 | 630            | 720 | 920 | 1060 | 1200 |  |  |

Nuts and screws of the same strength classes such as Nut 8 - Screw 8.8 can be loaded together up to the yield point of the screw without damaging the nut.

